LAB SESSION 12

ANALYZING THE POPULATION VARIANCE

 

 

INTRODUCTION:  In this lab we will present the hypothesis test for the standard deviation for a normal population.  When sample data are skewed, just one outlier can greatly affect the standard deviation.  It is very important, especially when using small samples, that the sampled population be normal; otherwise the procedures are not reliable.  However, unlike the analysis for the mean you will not have convenient computer commands to help you.

 

To use Illustration 9-16 as an example of using Excel to aid in completion of the hypothesis test, let's assume the 12 samples tested yielded the following data:

     

 165   172   180   189   181   173

 167   192   212   169   198   171

 

Enter the data into Column A.

Determine the descriptive statistics by the following:

            Choose:           Tools > Data Analysis > Descriptive Statistics

 

This gives you the following:

 

165

 

Column1

172

 

 

 

180

 

Mean

180.75

189

 

Standard Error

4.152627865

181

 

Median

176.5

173

 

Mode

#N/A

167

 

Standard Deviation

14.38512489

192

 

Sample Variance

206.9318182

212

 

Kurtosis

0.37412902

169

 

Skewness

1.005775368

198

 

Range

47

171

 

Minimum

165

 

 

Maximum

212

 

 

Sum

2169

 

 

Count

12

 

 

Confidence Level(95.0%)

9.139876928

From the table we see that n = 12, s = 14 and we calculate C2* = 21.56

 

To calculate the p-value, activate Cell B1.

            Choose:           Insert > fx > Statistical > CHIDIST > OK

            Enter:               C2*:    21.56

                                    Df:     11 > OK

 

This gives you the value 0.0280.

 

Recall that the manufacturer claims “shelf life” is normally distributed.

Why is this important?

What decision should be made? 

Does your conclusion match that for Illustration 9-16?

 

 

ASSIGNMENT:   Do Exercises 9.116 and 9.119 in your text.

Use the following data for 9.116

              31.6   31.9   32.6   31.9   31.5   32.5   32.0   32.2   31.9  32.0  

              32.2   31.8   31.8   32.3   31.1   31.8   31.5   31.7   31.8  31.8